Thermal Wind ClosureΒΆ

The circulation between basins or basin regions is represented by a Thermal wind closure (c.f. Nikurashin & Vallis (2012), Jansen & Nadeau (2019), Nadeau & Jansen (2020) )

\[\partial_{zz}\Psi^z\left(z\right)=\frac{1}{f}\left[b_2\left(z\right)-b_1\left(z\right)\right]\]

Where \(b_1(z)\) and \(b_2(z)\) are the buoyancy profiles in the adjacent regions, \(f\) is the coriolis parameter, and \(\Psi^z(z)\) is the overturning streamfunction in depth space.

Vanishing net mass flux between the columns yields the boundary conditions:

\[\begin{split}\begin{aligned} \Psi^z\left(z=0\right)&=0 \\ \Psi^z\left(z=-H\right)&=0 \end{aligned}\end{split}\]

The isopycnal overturning streamfunction is then obtained by mapping the z-coordinate streamfunction obtained from the thermal wind relation onto the buoyancy in the respective up-stream column:

\[\Psi^b\left(b\right) = \int_{-H}^0 \partial_z\Psi^z\left(z\right)\mathcal{H}\left[b - b_{up}\left(z\right)\right]\]

where \(\mathcal{H}\) is the Heaviside step function and

\[\begin{split}\begin{aligned} b_{up}\left(z\right) = \begin{cases} b_1\left(z\right), & \partial_z\Psi^z\left(z\right) > 0 \\ b_2\left(z\right), & \partial_z\Psi^z\left(z\right) < 0 \,. \end{cases} \end{aligned}\end{split}\]